Natural energy sources like sun and wind as well as waste heat from industrial processes are characterized by a fluctuating energy supply. To balance supply and demand in renewable energy systems, thermal energy storage (TES) is an important concept. This can be realized by storages containing numerous capsules filled with an appropriate phase change material (PCM). For applications it is essential to optimize the heat flow during the charging and discharging processes. The author presents a method for numerical simulation of these processes. He has developed a multi-scale approach combining detailed modelling of single capsules and a coarser simulation of a whole storage system. Numerical results from simulation are compared to measured data from experiments.
This title is in stock with our overseas supplier and should arrive at our Sydney warehouse within 3 - 5 weeks of you placing an order.
Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.
Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:
ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days
Share This Book: