The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory of colorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and the maximum number of colors. This feature pervades the theory, methods, algorithms, and applications of mixed hypergraph coloring. The book has broad appeal. It will be of interest to both pure and applied mathematicians, particularly those in the areas of discrete mathematics, combinatorial optimization, operations research, computer science, software engineering, molecular biology, and related businesses and industries. It also makes a nice supplementary text for courses in graph theory and discrete mathematics. This is especially useful for students in combinatorics and optimization.
Since the area is new, students will have the chance at this stage to obtain results that may become classic in the future.
- ISBN:
- 9780821828120
- 9780821828120
-
Category:
- Mathematical theory of computation
- Format:
- Hardback
- Publication Date:
-
01-01-2002
- Publisher:
- American Mathematical Society
- Country of origin:
- United States
- Pages:
- 181
- Weight:
- 0.57kg
This title is in stock with our overseas supplier and should arrive at our Sydney warehouse within 3 - 5 weeks of you placing an order.
Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.
Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:
ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days
Share This Book: