The purpose of this book is to study the relation between the representation ring of a finite group and its integral cohomology by means of characteristic classes. In this way it is possible to extend the known calculations and prove some general results for the integral cohomology ring of a group G of prime power order. Among the groups considered are those of p-rank less than 3, extra-special p-groups, symmetric groups and linear groups over finite fields. An important tool is the Riemann - Roch formula which provides a relation between the characteristic classes of an induced representation, the classes of the underlying representation and those of the permutation representation of the infinite symmetric group. Dr Thomas also discusses the implications of his work for some arithmetic groups which will interest algebraic number theorists. Dr Thomas assumes the reader has taken basic courses in algebraic topology, group theory and homological algebra, but has included an appendix in which he gives a purely topological proof of the Riemann - Roch formula.
- ISBN:
- 9780521090650
- 9780521090650
-
Category:
- Groups & group theory
- Format:
- Paperback
- Publication Date:
-
27-11-2008
- Language:
- English
- Publisher:
- Cambridge University Press
- Country of origin:
- United Kingdom
- Dimensions (mm):
- 229x152x9mm
- Weight:
- 0.22kg
This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.
Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.
Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:
ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days
Share This Book: