1. Granular magnetic nanostructures: An overview of finite size, dipolar interactions and surface effects on the magnetic properties
1.1 Introduction
1.2 Special Features of Magnetic Nanoparticles
1.2.1 Finite Size Effects
1.2.1.1 Single domain Limits and superparamagnetism: Brief Introduction
1.2.1.2 Surface Effects
1.2.2 Magnetic Nanoparticles Aggregates1.2.2.1 Classical Langevin Function Approach
1.2.2.2 Size distribution Overview
1.2.2.3 Experimental Magnetic Measurements
1.2.2.3.1 Measuring time and relaxation time
1.2.2.3.2 DC Magnetic Properties
1.2.2.3.2.1 Magnetization Curves
1.2.2.3.2.2 Zero field Cooled and field cooled curves1.2.2.3.2.3 Thermoremanent Magnetization
1.2.2.3.2.4 Isothermal Remanent magnetization
1.2.3 Different kinds of Interaction in Granular magnetic nanosystems
1.2.3.1 The Role of Interactions on the Magnetic properties
1.2.3.2 Models
1.2.4 Conclusion
2. Size and Shape controlled liquid phase synthesis of magnetic nanoparticles: recent updates
2.1 Introduction
2.2 Basic Mechanism on the formation of Magnetic nanoparticles
2.2.1 Nucleation: Burst of Nucleation Concept
2.2.2 Methods for the isolation of Nucleation and Growth; Numerical Simulation of Burst Nucleation
2.2.3 Growth Mechanism2.3 Novel Synthesis method for the size and shape controlled Magnetic nanoparticles
2.3.1 Classical Synthesis by Coprecipitation
2.3.2 Hydrothermal and High-Temperature Reactions
2.3.3 Polyols method
2.3.4 Sol-Gel Reactions
2.3.5 Electrochemical techniques
2.3.6 Flow Injection Syntheses
2.3 Protection and surface stability magnetic nanoparticles2.3.1 Inorganic materials
2.3.2 Polymer Stabilizers
2.3.3 Monomeric Stabilizers
2.4 Strategies to control the size and shape
2.5 Conclusions
3. Bimagnetic soft/hard and hard/soft magnetic core-shell nanoparticles with diverse application
3.1 Introduction
3.2 fundamental Phenomenology: Importance of coupling between soft and hard bimagnetic nanocrystals
3.3 Chemical synthesis approaches to obtain multifunctional nanosystem
3.3.1 Surface treatment of nanoparticles
3.3.2 Two Step Seed-mediated growth method
3.4 Characterization Strategy
3.5 Current and potential applications
3.5.1 Magnetic media recording3.5.2 Permanent magnets
3.5.3 Microwave absorptions
3.5.4 Biomedical applications
3.6 Conclusion and outlook
4. Magnetic nanoparticles probed by synchrotron radiations based on X-ray absorption method: spin polarization and Charge transfer mechanism
4.1 Introduction
4.2 X-ray absorption spectroscopies in synchrotron radiation facilities4.2.1 X-ray absorption fine structure
Share This Book: