Free shipping on orders over $99
Ensemble Machine Learning Cookbook

Ensemble Machine Learning Cookbook

Over 35 practical recipes to explore ensemble machine learning techniques using Python

by Dipayan Sarkar and Vijayalakshmi Natarajan
Paperback
Publication Date: 31/01/2019

Share This Book:

  $71.49
or 4 easy payments of $17.87 with
afterpay
Implement machine learning algorithms to build ensemble models using Keras, H2O, Scikit-Learn, Pandas and more

Key Features

Apply popular machine learning algorithms using a recipe-based approach
Implement boosting, bagging, and stacking ensemble methods to improve machine learning models
Discover real-world ensemble applications and encounter complex challenges in Kaggle competitions

Book DescriptionEnsemble modeling is an approach used to improve the performance of machine learning models. It combines two or more similar or dissimilar machine learning algorithms to deliver superior intellectual powers. This book will help you to implement popular machine learning algorithms to cover different paradigms of ensemble machine learning such as boosting, bagging, and stacking.

The Ensemble Machine Learning Cookbook will start by getting you acquainted with the basics of ensemble techniques and exploratory data analysis. You'll then learn to implement tasks related to statistical and machine learning algorithms to understand the ensemble of multiple heterogeneous algorithms. It will also ensure that you don't miss out on key topics, such as like resampling methods. As you progress, you'll get a better understanding of bagging, boosting, stacking, and working with the Random Forest algorithm using real-world examples. The book will highlight how these ensemble methods use multiple models to improve machine learning results, as compared to a single model. In the concluding chapters, you'll delve into advanced ensemble models using neural networks, natural language processing, and more. You'll also be able to implement models such as fraud detection, text categorization, and sentiment analysis.

By the end of this book, you'll be able to harness ensemble techniques and the working mechanisms of machine learning algorithms to build intelligent models using individual recipes.

What you will learn

Understand how to use machine learning algorithms for regression and classification problems
Implement ensemble techniques such as averaging, weighted averaging, and max-voting
Get to grips with advanced ensemble methods, such as bootstrapping, bagging, and stacking
Use Random Forest for tasks such as classification and regression
Implement an ensemble of homogeneous and heterogeneous machine learning algorithms
Learn and implement various boosting techniques, such as AdaBoost, Gradient Boosting Machine, and XGBoost

Who this book is forThis book is designed for data scientists, machine learning developers, and deep learning enthusiasts who want to delve into machine learning algorithms to build powerful ensemble models. Working knowledge of Python programming and basic statistics is a must to help you grasp the concepts in the book.
ISBN:
9781789136609
9781789136609
Category:
Machine learning
Format:
Paperback
Publication Date:
31-01-2019
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom
Pages:
336
Dimensions (mm):
93x75mm

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Ensemble Machine Learning Cookbook.