Free shipping on orders over $99
Exploratory Data Analysis Using R

Exploratory Data Analysis Using R

by Ronald K. Pearson
Hardback
Publication Date: 27/04/2018

Share This Book:

13%
OFF
RRP  $336.00

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$292.75
or 4 easy payments of $73.19 with
afterpay
    Please Note: We will source your item through a special order. Generally sent within 120 days.
This item qualifies your order for FREE DELIVERY

Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" - good, bad, and ugly - features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data.

The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing.

The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available.

About the Author:

Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network).

ISBN:
9781138480605
9781138480605
Category:
Databases
Format:
Hardback
Publication Date:
27-04-2018
Language:
English
Publisher:
CRC Press LLC
Country of origin:
United States
Dimensions (mm):
240x164x31mm
Weight:
0.31kg

Our Australian supplier has this title on order. You can place a backorder for this title now and we will ship it to you when it becomes available. 

While we are unable to provide a delivery estimate, most backorders will be delivered within 120 days. If we are informed by our supplier that the title is no longer available during this time, we will cancel and refund you for this item.  Likewise, if no delivery estimate has been provided within 120 days, we will contact our supplier for an update.  If there is still no delivery estimate we will then cancel the item and provided you with a refund.

If we are able to secure you a copy of the title, our supplier will despatch it to our Sydney warehouse.  Once received we make sure it is in perfect condition and then despatch it to you via the Australia Post eParcel service, which includes online tracking.  You will receive a shipping notice from us when this occurs.

Reviews

Be the first to review Exploratory Data Analysis Using R.