Free shipping on orders over $99
Generative Adversarial Networks Projects

Generative Adversarial Networks Projects

Build next-generation generative models using TensorFlow and Keras

by Kailash Ahirwar
Paperback
Publication Date: 31/01/2019

Share This Book:

  $71.49
or 4 easy payments of $17.87 with
afterpay
Explore various Generative Adversarial Network architectures using the Python ecosystem

Key Features

Use different datasets to build advanced projects in the Generative Adversarial Network domain
Implement projects ranging from generating 3D shapes to a face aging application
Explore the power of GANs to contribute in open source research and projects

Book DescriptionGenerative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain.

Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you'll gain an understanding of the architecture and functioning of generative models through their practical implementation.

By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects.

What you will learn

Train a network on the 3D ShapeNet dataset to generate realistic shapes
Generate anime characters using the Keras implementation of DCGAN
Implement an SRGAN network to generate high-resolution images
Train Age-cGAN on Wiki-Cropped images to improve face verification
Use Conditional GANs for image-to-image translation
Understand the generator and discriminator implementations of StackGAN in Keras

Who this book is forIf you're a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.
ISBN:
9781789136678
9781789136678
Category:
Algorithms & data structures
Format:
Paperback
Publication Date:
31-01-2019
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom
Pages:
316
Dimensions (mm):
93x75mm

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Generative Adversarial Networks Projects.