Free shipping on orders over $99
Hands-On Ensemble Learning with Python

Hands-On Ensemble Learning with Python

Build highly optimized ensemble machine learning models using scikit-learn and Keras

by George Kyriakides and Konstantinos G. Margaritis
Paperback
Publication Date: 19/07/2019

Share This Book:

  $57.19
or 4 easy payments of $14.30 with
afterpay
Combine popular machine learning techniques to create ensemble models using Python

Key Features

Implement ensemble models using algorithms such as random forests and AdaBoost
Apply boosting, bagging, and stacking ensemble methods to improve the prediction accuracy of your model
Explore real-world data sets and practical examples coded in scikit-learn and Keras

Book DescriptionEnsembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model.

With its hands-on approach, you'll not only get up to speed on the basic theory but also the application of various ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. Furthermore, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models.

By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios.

What you will learn

Implement ensemble methods to generate models with high accuracy
Overcome challenges such as bias and variance
Explore machine learning algorithms to evaluate model performance
Understand how to construct, evaluate, and apply ensemble models
Analyze tweets in real time using Twitter's streaming API
Use Keras to build an ensemble of neural networks for the MovieLens dataset

Who this book is forThis book is for data analysts, data scientists, machine learning engineers and other professionals who are looking to generate advanced models using ensemble techniques. An understanding of Python code and basic knowledge of statistics is required to make the most out of this book.
ISBN:
9781789612851
9781789612851
Category:
Computer vision
Format:
Paperback
Publication Date:
19-07-2019
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom
Pages:
298
Dimensions (mm):
93x75mm

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Hands-On Ensemble Learning with Python.