Free Shipping on Order Over $80
AfterPay Available
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow

by Sudharsan Ravichandiran
Publication Date: 28/06/2018
A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python

Key Features

Your entry point into the world of artificial intelligence using the power of Python
An example-rich guide to master various RL and DRL algorithms
Explore various state-of-the-art architectures along with math

Book DescriptionReinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms.

The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning.

By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.

What you will learn

Understand the basics of reinforcement learning methods, algorithms, and elements
Train an agent to walk using OpenAI Gym and Tensorflow
Understand the Markov Decision Process, Bellman's optimality, and TD learning
Solve multi-armed-bandit problems using various algorithms
Master deep learning algorithms, such as RNN, LSTM, and CNN with applications
Build intelligent agents using the DRQN algorithm to play the Doom game
Teach agents to play the Lunar Lander game using DDPG
Train an agent to win a car racing game using dueling DQN

Who this book is forIf you're a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.
Artificial intelligence
Publication Date:
Packt Publishing Limited
Country of origin:
United Kingdom
Dimensions (mm):

This title is in stock with our Australian supplier and arrives at our Sydney warehouse within 10-15 working days of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro  2 working days

NSW Metro  2 working days

NSW Rural  2 - 3 working days

NSW Remote  2 - 5 working days

NT Metro  3 - 6 working days

NT Remote  4 - 10 working days

QLD Metro  2 - 4 working days

QLD Rural  2 - 5 working days

QLD Remote  2 - 7 working days

SA Metro  2 - 5 working days

SA Rural  3 - 6 working days

SA Remote  3 - 7 working days

TAS Metro  3 - 6 working days

TAS Rural  3 - 6 working days

VIC Metro  2 - 3 working days

VIC Rural  2 - 4 working days

VIC Remote  2 - 5 working days

WA Metro  3 - 6 working days

WA Rural  4 - 8 working days

WA Remote  4 - 12 working days

Customer Reviews

Be the first to review Hands-On Reinforcement Learning with Python.