Free shipping on orders over $99
Hands-On Unsupervised Learning with Python

Hands-On Unsupervised Learning with Python

Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more

by Giuseppe Bonaccorso
Paperback
Publication Date: 28/02/2019

Share This Book:

  $71.49
or 4 easy payments of $17.87 with
afterpay
Discover the skill-sets required to implement various approaches to Machine Learning with Python

Key Features

Explore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and more
Build your own neural network models using modern Python libraries
Practical examples show you how to implement different machine learning and deep learning techniques

Book DescriptionUnsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python.

This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images.

By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges.

What you will learn

Use cluster algorithms to identify and optimize natural groups of data
Explore advanced non-linear and hierarchical clustering in action
Soft label assignments for fuzzy c-means and Gaussian mixture models
Detect anomalies through density estimation
Perform principal component analysis using neural network models
Create unsupervised models using GANs

Who this book is forThis book is intended for statisticians, data scientists, machine learning developers, and deep learning practitioners who want to build smart applications by implementing key building block unsupervised learning, and master all the new techniques and algorithms offered in machine learning and deep learning using real-world examples. Some prior knowledge of machine learning concepts and statistics is desirable.
ISBN:
9781789348279
9781789348279
Category:
Machine learning
Format:
Paperback
Publication Date:
28-02-2019
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom
Pages:
386
Dimensions (mm):
93x75mm

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Hands-On Unsupervised Learning with Python.