Free shipping on orders over $99
Introduction to the H-Principle

Introduction to the H-Principle

by Y. EliashbergN. Mishachev and K. Cieliebak
Hardback
Publication Date: 31/05/2024

Share This Book:

  $408.80
or 4 easy payments of $102.20 with
afterpay
This item qualifies your order for FREE DELIVERY
In differential geometry and topology one often deals with systems of partial differential equations as well as partial differential inequalities that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the 1950s that the solvability of differential relations (i.e., equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash-Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle. The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis is made on applications to symplectic and contact geometry. The present book is the first broadly accessible exposition of the theory and its applications, making it an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists, and analysts will also find much value in this very readable exposition of an important and remarkable topic. This second edition of the book is significantly revised and expanded to almost twice of the original size. The most significant addition to the original book is the new part devoted to the method of wrinkling and its applications. Several other chapters (e.g., on multivalued holonomic approximation and foliations) are either added or completely rewritten.
ISBN:
9781470461058
9781470461058
Category:
Mathematics
Format:
Hardback
Publication Date:
31-05-2024
Language:
English
Publisher:
American Mathematical Society
Country of origin:
United States
Edition:
2nd Edition
Dimensions (mm):
254x178mm

This title is in stock with our overseas supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Introduction to the H-Principle.