Since the initial predictions for the existence of Weyl fermions in condensed matter, many different experimental techniques have confirmed the existence of Weyl semimetals. Among these techniques, optical responses have shown a variety of effects associated with the existence of Weyl fermions. In chiral crystals, we find a new type of fermions protected by crystal symmetries - the chiral multifold fermions - that can be understood as a higher-spin generalization of Weyl fermions.
This work provides a complete description of all chiral multifold fermions, studying their topological properties and the k*p models describing them. We compute the optical conductivity of all chiral multifold fermions and establish their optical selection rules. We find that the activation frequencies are different for each type of multifold fermion, thus constituting an experimental fingerprint for each type of multifold fermion.
Building on the theoretical results obtained in the first part of our analysis, we study two chiral multifold semimetals: RhSi and CoSi. We analyze the experimental results with k*p and tight-binding models based on the crystal symmetries of the material. We trace back the features observed in the experimental optical conductivity to the existence of multifold fermions near the Fermi level and estimate the chemical potential and the scattering lifetime in both materials.
Finally, we provide an overview of second-order optical responses and study the second-harmonic generation of RhSi. We find a sizeable second-harmonic response in the low-energy regime associated with optical transitions between topological bands. However, this regime is extremely challenging to access with the current experimental techniques.
We conclude by providing an overview of the main results, highlighting potential avenues to further research on chiral multifold semimetals and the future of optical responses as experimental probes to characterize topological phases.
- ISBN:
- 9783031257704
- 9783031257704
-
Category:
- Condensed matter physics (liquid state & solid state physics)
- Format:
- Hardback
- Publication Date:
-
31-05-2023
- Publisher:
- Springer International Publishing AG
- Country of origin:
- Switzerland
- Pages:
- 117
- Dimensions (mm):
- 235x155mm
- Weight:
- 0.38kg
This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.
Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.
Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:
ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days
Share This Book: