Computed Tomography.- Multi-Scale Coarse-to-Fine Segmentation for Screening Pancreatic Ductal Adenocarcinoma.- MVP-Net: Multi-view FPN with Position-aware Attention for Deep Universal Lesion Detection.- Spatial-Frequency Non-Local Convolutional LSTM Network for pRCC classification.- BCD-Net for Low-dose CT Reconstruction: Acceleration, Convergence, and Generalization.- Abdominal Adipose Tissue Segmentation in MRI with Double Loss Function Collaborative Learning.- Closing the Gap between Deep and Conventional Image Registration using Probabilistic Dense Displacement Networks.- Generating Pareto optimal dose distributions for radiation therapy treatment planning.- PAN: Projective Adversarial Network for Medical Image Segmentation.- Generative Mask Pyramid Network for CT/CBCT Metal Artifact Reduction with Joint Projection-Sinogram Correction.- Multi-Class Gradient Harmonized Dice Loss with Application to Knee MR Image Segmentation.- LSRC: A Long-Short Range Context-Fusing Framework for Automatic 3D Vertebra Localization.- Contextual Deep Regression Network for Volume Estimation in Orbital CT.- Multi-scale GANs for Memory-efficient Generation of High Resolution Medical Images.- Deep Learning based Metal Artifacts Reduction in post-operative Cochlear Implant CT Imaging.- ImHistNet: Learnable Image Histogram Based DNN with Application to Noninvasive Determination of Carcinoma Grades in CT Scans.- DPA-DenseBiasNet: Semi-supervised 3D Fine Renal Artery Segmentation with Dense Biased Network and Deep Priori Anatomy.- Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior.- Pairwise Semantic Segmentation via Conjugate Fully Convolutional Network.- Unsupervised Deformable Image Registration Using Cycle-Consistent CNN.- Volumetric Attention for 3D Medical Image Segmentation and Detection.- Improving Deep Lesion Detection Using 3D Contextual and Spatial Attention.- MULAN: Multitask Universal Lesion Analysis Network for Joint Lesion Detection, Tagging, and Segmentation.- Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction.- AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks.- Integrating cross-modality hallucinated MRI with CT to aid mediastinal lung tumor segmentation.- Bronchus Segmentation and Classification by Neural Networks and Linear Programming.- Unsupervised Segmentation of Micro-CT Images of Lung Cancer Specimen Using Deep Generative Models.- Normal appearance autoencoder for lung cancer detection and segmentation.- mlVIRNET: Multilevel Variational Image Registration Network.- NoduleNet: Decoupled False Positive Reduction for Pulmonary Nodule Detection and Segmentation.- Encoding CT Anatomy Knowledge for Unpaired Chest X-ray Image Decomposition.- Targeting Precision with Data Augmented Samples in Deep Learning.- Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest CT Images.- Attentive CT Lesion Detection Using Deep Pyramid Inference with Multi-Scale Booster.- Deep Variational Networks with Exponential Weighting for Learning Computed Tomography.- R2-Net: Recurrent and Recursive Network for Sparse-view CT Artifacts Removal.- Stereo-Correlation and Noise-Distribution Aware ResVoxGAN for Dense Slices Reconstruction and Noise Reduction in Thick Low-Dose CT.- Harnessing 2D Networks and 3D Features for Automated Pancreas Segmentation from Volumetric CT Images.- Tubular Structure Segmentation Using Spatial Fully Connected Network With Radial Distance Loss for 3D Medical Images.- Bronchial Cartilage Assessment with Model-Based GAN Regressor.- Adversarial optimization for joint registration and segmentation in prostate CT radiotherapy.- Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis.- Automatically Localizing a Large Set of Spatially Correlated Key Points: A Case Study in Spine Imaging.- Permutohedral Attention Module for Efficient Non-Local Neural Networks.

Share This Book: