Free shipping on orders over $99
Medical Image Computing and Computer Assisted Intervention -- MICCAI 2019

Medical Image Computing and Computer Assisted Intervention -- MICCAI 2019

22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part VI

by Dinggang ShenTianming Liu Terry M. Peters and others
Paperback
Publication Date: 13/10/2019

Share This Book:

  $169.00
or 4 easy payments of $42.25 with
afterpay
This item qualifies your order for FREE DELIVERY

Computed Tomography.- Multi-Scale Coarse-to-Fine Segmentation for Screening Pancreatic Ductal Adenocarcinoma.- MVP-Net: Multi-view FPN with Position-aware Attention for Deep Universal Lesion Detection.- Spatial-Frequency Non-Local Convolutional LSTM Network for pRCC classification.- BCD-Net for Low-dose CT Reconstruction: Acceleration, Convergence, and Generalization.- Abdominal Adipose Tissue Segmentation in MRI with Double Loss Function Collaborative Learning.- Closing the Gap between Deep and Conventional Image Registration using Probabilistic Dense Displacement Networks.- Generating Pareto optimal dose distributions for radiation therapy treatment planning.- PAN: Projective Adversarial Network for Medical Image Segmentation.- Generative Mask Pyramid Network for CT/CBCT Metal Artifact Reduction with Joint Projection-Sinogram Correction.- Multi-Class Gradient Harmonized Dice Loss with Application to Knee MR Image Segmentation.- LSRC: A Long-Short Range Context-Fusing Framework for Automatic 3D Vertebra Localization.- Contextual Deep Regression Network for Volume Estimation in Orbital CT.- Multi-scale GANs for Memory-efficient Generation of High Resolution Medical Images.- Deep Learning based Metal Artifacts Reduction in post-operative Cochlear Implant CT Imaging.- ImHistNet: Learnable Image Histogram Based DNN with Application to Noninvasive Determination of Carcinoma Grades in CT Scans.- DPA-DenseBiasNet: Semi-supervised 3D Fine Renal Artery Segmentation with Dense Biased Network and Deep Priori Anatomy.- Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior.- Pairwise Semantic Segmentation via Conjugate Fully Convolutional Network.- Unsupervised Deformable Image Registration Using Cycle-Consistent CNN.- Volumetric Attention for 3D Medical Image Segmentation and Detection.- Improving Deep Lesion Detection Using 3D Contextual and Spatial Attention.- MULAN: Multitask Universal Lesion Analysis Network for Joint Lesion Detection, Tagging, and Segmentation.- Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction.- AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks.- Integrating cross-modality hallucinated MRI with CT to aid mediastinal lung tumor segmentation.- Bronchus Segmentation and Classification by Neural Networks and Linear Programming.- Unsupervised Segmentation of Micro-CT Images of Lung Cancer Specimen Using Deep Generative Models.- Normal appearance autoencoder for lung cancer detection and segmentation.- mlVIRNET: Multilevel Variational Image Registration Network.- NoduleNet: Decoupled False Positive Reduction for Pulmonary Nodule Detection and Segmentation.- Encoding CT Anatomy Knowledge for Unpaired Chest X-ray Image Decomposition.- Targeting Precision with Data Augmented Samples in Deep Learning.- Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest CT Images.- Attentive CT Lesion Detection Using Deep Pyramid Inference with Multi-Scale Booster.- Deep Variational Networks with Exponential Weighting for Learning Computed Tomography.- R2-Net: Recurrent and Recursive Network for Sparse-view CT Artifacts Removal.- Stereo-Correlation and Noise-Distribution Aware ResVoxGAN for Dense Slices Reconstruction and Noise Reduction in Thick Low-Dose CT.- Harnessing 2D Networks and 3D Features for Automated Pancreas Segmentation from Volumetric CT Images.- Tubular Structure Segmentation Using Spatial Fully Connected Network With Radial Distance Loss for 3D Medical Images.- Bronchial Cartilage Assessment with Model-Based GAN Regressor.- Adversarial optimization for joint registration and segmentation in prostate CT radiotherapy.- Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis.- Automatically Localizing a Large Set of Spatially Correlated Key Points: A Case Study in Spine Imaging.- Permutohedral Attention Module for Efficient Non-Local Neural Networks.

ISBN:
9783030322250
9783030322250
Category:
Graphical & digital media applications
Format:
Paperback
Publication Date:
13-10-2019
Language:
English
Publisher:
Springer International Publishing AG
Country of origin:
Switzerland
Dimensions (mm):
235x155mm
Weight:
1.35kg

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Medical Image Computing and Computer Assisted Intervention -- MICCAI 2019.