Free shipping on orders over $99
PySpark Cookbook

PySpark Cookbook

Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

by Tomasz Drabas and Denny Lee
Paperback
Publication Date: 29/06/2018

Share This Book:

  $64.89
or 4 easy payments of $16.22 with
afterpay
Combine the power of Apache Spark and Python to build effective big data applications

Key Features

Perform effective data processing, machine learning, and analytics using PySpark
Overcome challenges in developing and deploying Spark solutions using Python
Explore recipes for efficiently combining Python and Apache Spark to process data

Book DescriptionApache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.

You'll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.

By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.

What you will learn

Configure a local instance of PySpark in a virtual environment
Install and configure Jupyter in local and multi-node environments
Create DataFrames from JSON and a dictionary using pyspark.sql
Explore regression and clustering models available in the ML module
Use DataFrames to transform data used for modeling
Connect to PubNub and perform aggregations on streams

Who this book is forThe PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.
ISBN:
9781788835367
9781788835367
Category:
Data capture & analysis
Format:
Paperback
Publication Date:
29-06-2018
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom
Pages:
330
Dimensions (mm):
93x75mm

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review PySpark Cookbook.