Free shipping on orders over $99
Search for the Decay K_L ? ?^0\nu\bar{\nu} at the J-PARC KOTO Experiment

Search for the Decay K_L ? ?^0\nu\bar{\nu} at the J-PARC KOTO Experiment

by Kota Nakagiri
Paperback
Publication Date: 21/08/2021

Share This Book:

  $169.00
or 4 easy payments of $42.25 with
afterpay
This item qualifies your order for FREE DELIVERY
This book reports on a new result from the KL 0 search at the J-PARC KOTO experiment, which sets an upper limit of 3x10-9 for the branching fraction of the decay at the 90% confidence level, improving the previous best limit by an order of magnitude. To explain the matter-antimatter asymmetry in the universe, still unknown new physics beyond the standard model (SM) that breaks CP symmetry is necessary. The rare decay of a long-lived neutral K meson, KL 0 , is a CP-violating decay. It is an excellent probe to search for new physics because new physics can contribute to the decay and change its branching fraction, while the SM is as small as 3x10-11. However, it is extremely difficult to search for because all of the decay products are neutral and two neutrinos are undetectable. The KL 0 signal is identified by measuring two photons from a 0 with a calorimeter and confirming the absence of any other detectable particles with hermetic veto counters. The book contributes to the analysis of neutron-induced backgrounds which were the dominant background sources in the search. For the background caused by two consecutive hadronic showers in the calorimeter due to a neutron, the author evaluated the background yield using a data-driven approach. For another background caused by an meson production- decays two photons-by a neutron that hits a veto counter near the calorimeter, the author developed an original analysis technique to reduce it. The book also contributes to the analysis of the normalization modes (KL 3 0, KL 2 0, KL 2 ) to measure KL yield, the estimation of the signal acceptance based on a simulation, and the evaluation of the trigger efficiency. As a result, significant improvements in the measurement were achieved, and this is an important step in the continuing higher sensitivity search, which can reach new physics with the energy scales up to O(100-1000 TeV).
ISBN:
9789811564246
9789811564246
Category:
Atomic & molecular physics
Format:
Paperback
Publication Date:
21-08-2021
Publisher:
Springer Verlag, Singapore
Country of origin:
Singapore
Pages:
151
Dimensions (mm):
235x155mm
Weight:
0.27kg

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Search for the Decay K_L ? ?^0\nu\bar{\nu} at the J-PARC KOTO Experiment.