Free shipping on orders over $99
Sparse Optimization Theory and Methods

Sparse Optimization Theory and Methods

by Yun-Bin Zhao
Hardback
Publication Date: 07/08/2018

Share This Book:

14%
OFF
RRP  $368.00

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$319.75
or 4 easy payments of $79.94 with
afterpay
    Please Note: We will source your item through a special order. Generally sent within 120 days.
This item qualifies your order for FREE DELIVERY

Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science.

Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author's latest research in the field that have not appeared in other books.

ISBN:
9781138080942
9781138080942
Category:
Operational research
Format:
Hardback
Publication Date:
07-08-2018
Language:
English
Publisher:
CRC Press LLC
Country of origin:
United States
Dimensions (mm):
240x165x25mm
Weight:
0.73kg

Our Australian supplier has this title on order. You can place a backorder for this title now and we will ship it to you when it becomes available. 

While we are unable to provide a delivery estimate, most backorders will be delivered within 120 days. If we are informed by our supplier that the title is no longer available during this time, we will cancel and refund you for this item.  Likewise, if no delivery estimate has been provided within 120 days, we will contact our supplier for an update.  If there is still no delivery estimate we will then cancel the item and provided you with a refund.

If we are able to secure you a copy of the title, our supplier will despatch it to our Sydney warehouse.  Once received we make sure it is in perfect condition and then despatch it to you via the Australia Post eParcel service, which includes online tracking.  You will receive a shipping notice from us when this occurs.

Reviews

Be the first to review Sparse Optimization Theory and Methods.