Free shipping on orders over $99
Time Series Analysis with Python Cookbook

Time Series Analysis with Python Cookbook

Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation

by Tarek A. Atwan
Paperback
Publication Date: 30/06/2022

Share This Book:

  $102.29
or 4 easy payments of $25.57 with
afterpay
This item qualifies your order for FREE DELIVERY
Perform time series analysis and forecasting confidently with this Python code bank and reference manual

Key Features

Explore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithms
Learn different techniques for evaluating, diagnosing, and optimizing your models
Work with a variety of complex data with trends, multiple seasonal patterns, and irregularities

Book DescriptionTime series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.

This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.

Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.

What you will learn

Understand what makes time series data different from other data
Apply various imputation and interpolation strategies for missing data
Implement different models for univariate and multivariate time series
Use different deep learning libraries such as TensorFlow, Keras, and PyTorch
Plot interactive time series visualizations using hvPlot
Explore state-space models and the unobserved components model (UCM)
Detect anomalies using statistical and machine learning methods
Forecast complex time series with multiple seasonal patterns

Who this book is forThis book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.
ISBN:
9781801075541
9781801075541
Category:
Web programming
Format:
Paperback
Publication Date:
30-06-2022
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom
Pages:
630
Dimensions (mm):
235x191mm

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 1 - 2 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Time Series Analysis with Python Cookbook.