While extended zeta functions support investigations of Riemann's hypothesis and estimates for the Prime Number Theorem, some zeta functions offer better prospects for providing easy proofs, or disproofs. In 1859, Riemann had the idea to define Euler’s function ε(x)=∑m^x for all complex numbers s=x+iy by analytic extension. This extension is important in number theory and plays a central role in the distribution of prime numbers. There are a number of ways of extending Euler's zeta function ζ(s) to points where 0≤x≤1. Because ζ(s) is an alternating series, it becomes possible to prove or disprove Riemann's Hypothesis.
- ISBN:
- 9781311414205
- 9781311414205
-
Category:
- Number theory
- Publication Date:
-
20-05-2015
- Language:
- English
- Publisher:
- James Constant
This item is delivered digitally
Hi There,
Did you know that you can save books into your library to create gift lists, reading lists, etc?
You can also mark books that you're reading, or want to read.
Great!
Click on Save to My Library / Lists
Select the List you'd like to categorise as, or add your own
Here you can mark if you have read this book, reading it or want to read
Awesome! You added your first item into your Library
Great! The fun begins.
Click on My Library / My Lists and I will take you there
Reviews
Be the first to review Extended Zeta Functions Prove or Dis-prove Riemann's Hypothesis.
Share This eBook: