Foundations of Data Science

Foundations of Data Science

by Avrim BlumJohn Hopcroft and Ravindran Kannan
Epub (Kobo), Epub (Adobe)
Publication Date: 31/01/2020

Share This eBook:

  $73.99

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

ISBN:
9781108617369
9781108617369
Category:
Pattern recognition
Format:
Epub (Kobo), Epub (Adobe)
Publication Date:
31-01-2020
Language:
English
Publisher:
Cambridge University Press

This item is delivered digitally

Reviews

Be the first to review Foundations of Data Science.