Number Theory, Fourier Analysis and Geometric Discrepancy

Number Theory, Fourier Analysis and Geometric Discrepancy

by Giancarlo Travaglini
Epub (Kobo), Epub (Adobe)
Publication Date: 10/11/2015

Share This eBook:

  $61.99

The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma–Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions.

ISBN:
9781139985888
9781139985888
Category:
Number theory
Format:
Epub (Kobo), Epub (Adobe)
Publication Date:
10-11-2015
Language:
English
Publisher:
Cambridge University Press

This item is delivered digitally

Reviews

Be the first to review Number Theory.